If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12t^2-60t+72=0
a = 12; b = -60; c = +72;
Δ = b2-4ac
Δ = -602-4·12·72
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-12}{2*12}=\frac{48}{24} =2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+12}{2*12}=\frac{72}{24} =3 $
| 4x2-4x/4x=0 | | 1/3(9y+12)=-17 | | 2+6x=-5x-22 | | y=0,4 | | 2q−23=1 | | 2-1x=5x-10 | | 17+6w=95 | | 2x-3/4x-4x+8=0 | | d/2=144 | | 6c+6=3c+10 | | 2x-3/4x2-4x+8=0 | | 27=-6+b | | x–12=34 | | 12x+3x=9(x-6) | | 5(2x-8)=6(2x-47) | | 3xx3x+x-10=0 | | x÷1/9=2/13 | | 3/(x+1)^-1=0 | | y=285(1+.75)^ | | n/5=23.7 | | 1/x+5=1/(2x) | | 500=15x+100 | | (-3x)/5=9 | | .4x=10.2 | | (1/4x)+(7/8)=3/8 | | 16x-9=14x+3 | | 120=20h+50 | | 20-2p+3^2p=4 | | 7.x+20=34 | | 2x²+19x+167=0 | | 3x^2−18x+1=7x−7 | | 12.x-9=111 |